線形回帰(Linear Regression)

線形回帰(Linear Regression)は、統計学において、1つまたは複数の説明変数とスカラー応答との間の線形関係をモデル化する手法です。以下に線形回帰の主要な特徴と概念をまとめます。 線形回帰の特徴 モデルの基本概念 線形回帰は、データポイントの集まりに対して直線をフィッティングし、その直線の方程式を用いて予測を行います。 単回帰と重回帰 単回帰: 1つの説明変数を用いた回帰分析。 重回帰: 複数の説明変数を用いた回帰分析。 目的関数 最小二乗法を用いて、実際のデータとモデルが予測する値との誤差を最小化します。 仮定 説明変数と応答変数の関係が線形であること。 誤差項は独立で、同じ分散を持つ(等分散性)。 誤差項は正規分布に従う。 評価指標 決定係数(R²): モデルの説明力を示す指標。 残差分析: モデルの適合度を評価するために残差を分析します。 線形回帰の利点と欠点 利点: モデルが単純で解釈しやすい。 計算が比較的容易で、実装が簡単。 欠点: 線形性の仮定が成り立たない場合、モデルの性能が低下する。 外れ値に敏感で、影響を受けやすい。 線形回帰の応用 経済学、医療、工学など、さまざまな分野での予測や分析に利用されます。 例えば、売上予測、リスク評価、マーケティング戦略の効果測定など。 このように、線形回帰はデータ分析や予測において広く使用される手法であり、基本的な統計モデルの一つです。 Linear Regressiion 总结: 线性回归是一种基本的统计方法,用于建模因变量(也称为响应变量)与一个或多个自变量(也称为预测变量)之间的关系。它的目标是找到通过数据点的最佳拟合直线,从而根据自变量的值预测因变量的值。最简单的形式是直线方程 y=mx+b,其中 y 是因变量,x 是自变量,m 是斜率,b 是截距。 Linear regression is a basic statistical method used to model the relationship between a dependent variable and one or more independent variables. It aims to find the best-fitting straight line through a set of data points, predicting the dependent variable based on the values of the independent variables....

十二月 3, 2024 · 1 分钟 · 136 字 · Me